Light elements in the light of 3D and non-LTE

Martin Asplund

Remo Collet Ana Garcia Perez Wolfgang Hayek Karin Lind Tiago Pereira Regner Trampedach

Max Planck Institute for Astrophysics

Elemental fingerprints

The chemical composition is encoded in stellar spectra but detailed modelling is required:

- Stellar atmospheres ⇒ Convection/3D
- Radiative transfer ⇒ Non-LTE

LTE vs non-LTE

LTE: Boltzmann + Saha distribution

$$\frac{N_{i}}{N} = \frac{g_{i}}{u(T)} e^{-\chi_{i}/kT}$$

$$\frac{N_{i+1}}{N_{i}} N_{e} = \frac{U_{i+1}}{U_{i}} \left(\frac{2\pi m_{e}kT}{h^{2}}\right)^{3/2} e^{-\chi_{ion}/kT}$$
"Depends only on the second statement of the second stateme

Non-LTE: Rate equations + radiative transfer equation

$$\frac{\mathrm{d}\,n_{\mathrm{i}}(r)}{\mathrm{d}\,t} = \sum_{j=i}^{N} n_{\mathrm{j}}(r)P_{\mathrm{j}\,\mathrm{i}}(r) - n_{\mathrm{i}}(r)\sum_{j=i}^{N} P_{\mathrm{i}\,\mathrm{j}}(r) = 0$$

$$P_{\mathrm{i}\,\mathrm{j}} = A_{\mathrm{i}\,\mathrm{j}} + B_{\mathrm{i}\,\mathrm{j}}\,\overline{J} + C_{\mathrm{i}\,\mathrm{j}}$$

$$\frac{\mathrm{d}\,I_{\nu}}{\mathrm{d}\,\tau_{\nu}} = -I_{\nu} + S_{\nu}$$
Everything everythin

Non-LTE input atomic data

Radiative transitions:

- Bound-bound
- Photo-ionization
 Data available (Opacity
 Project, Iron Project etc)

Collisional transitions:

- Electrons
- Hydrogen
- Charge transfer
 Data available for Li
 (Barklem et al. 2003)
 Uncertain classical recipes
 for Be+B (e.g. Drawin 1968)

Solar atmosphere

Solar atmosphere

1D stellar atmosphere models

Model atmospheres:

- Time-independent
- 1-dimensional
- Hydrostatic
- Mixing length theory
- LTE
- Detailed radiative transfer
- MARCS, Kurucz etc

3D stellar atmosphere models

MARKA

Ingredients:

- Radiative-hydrodynamical
- Time-dependent
- 3-dimensional
- Simplified radiative transfer
- LTE

Essentially parameter free

For the aficionados:

Stagger-code (Nordlund et al.) MHD equation-of-state (Mihalas et al.) MARCS opacities (Gustafsson et al.) Opacity binning (Nordlund)

Temperature structure

Similar good agreement with CO⁵BOLD 3D solar model (Caffau et al. 2008) Atmospheric temperature structure is critical Our 3D model performs remarkably well

Pereira et al. 2009

3D line formation

3D line formation

3D line formation

Complete solar inventory

Asplund et al. (2009, ARAA): 3D-based analysis of <u>all</u> elements • >2200 atomic + molecular lines • 3D non-LTE for some elements ⇒ 3D stellar analysis doable!

	Elem.	Photosphere	Meteorites		Elem.	Photosphere	Meteorites
1	Н	12.00	8.22 ± 0.04	44	Ru	1.75 ± 0.09	1.76 ± 0.03
2	He	$[10.93 \pm 0.01]$	1.29	45	\mathbf{Rh}	0.91 ± 0.08	1.06 ± 0.04
3	Li	1.05 ± 0.10	3.26 ± 0.05	46	\mathbf{Pd}	1.57 ± 0.07	1.65 ± 0.02
4	Be	1.38 ± 0.09	1.30 ± 0.03	47	Ag	0.94 ± 0.11	1.20 ± 0.02
5	в	2.70 ± 0.20	2.79 ± 0.04	48	\mathbf{Cd}		1.71 ± 0.03
6	C	8.43 ± 0.05	7.39 ± 0.04	49	In	0.80 ± 0.20	0.76 ± 0.03
7	Ν	7.83 ± 0.05	6.26 ± 0.06	50	\mathbf{Sn}	2.04 ± 0.10	2.07 ± 0.06
8	0	8.69 ± 0.05	8.40 ± 0.04	51	\mathbf{Sb}		1.01 ± 0.06
9	F	4.56 ± 0.30	4.42 ± 0.06	52	Te		2.18 ± 0.03
10	Ne	$[7.93 \pm 0.10]$	-1.08	53	I		1.55 ± 0.08
11	Na	6.24 ± 0.04	6.27 ± 0.02	54	Xe	$[2.24 \pm 0.06]$	-1.93
12	Mg	7.60 ± 0.04	7.53 ± 0.01	55	Cs		1.08 ± 0.02
13	Al	6.45 ± 0.04	6.43 ± 0.01	56	Ba	2.18 ± 0.09	2.18 ± 0.03
14	Si	7.51 ± 0.04	7.51 ± 0.01	57	La	1.10 ± 0.04	1.17 ± 0.02
15	Р	5.41 ± 0.03	5.43 ± 0.04	58	Ce	1.58 ± 0.04	1.58 ± 0.02
16	S	7.12 ± 0.03	7.15 ± 0.02	59	\mathbf{Pr}	0.72 ± 0.04	0.76 ± 0.03
17	Cl	5.50 ± 0.30	5.23 ± 0.06	60	Nd	1.42 ± 0.04	1.45 ± 0.02
18	Ar	$[6.40 \pm 0.13]$	-0.46	62	\mathbf{Sm}	0.96 ± 0.04	0.94 ± 0.02
19	K	5.03 ± 0.09	5.08 ± 0.02	63	$\mathbf{E}\mathbf{u}$	0.51 ± 0.04	0.51 ± 0.02
20	Ca	6.34 ± 0.04	6.29 ± 0.02	64	Gd	1.07 ± 0.04	1.05 ± 0.02
21	Sc	3.15 ± 0.04	3.05 ± 0.02	65	Tb	0.24 ± 0.08	0.32 ± 0.03
22	Ti	4.95 ± 0.05	4.91 ± 0.03	66	Dy	1.10 ± 0.04	1.13 ± 0.02
23	V	3.93 ± 0.08	3.96 ± 0.02	67	Ho	0.48 ± 0.11	0.47 ± 0.03
24	Cr	5.64 ± 0.04	5.64 ± 0.01	68	\mathbf{Er}	0.93 ± 0.05	0.92 ± 0.02
25	Mn	5.43 ± 0.05	5.48 ± 0.01	69	Tm	0.10 ± 0.04	0.12 ± 0.03
26	Fe	7.50 ± 0.04	7.45 ± 0.01	70	Yb	0.84 ± 0.11	0.92 ± 0.02
27	Co	4.99 ± 0.07	4.87 ± 0.01	71	Lu	0.10 ± 0.09	0.09 ± 0.02
28	Ni	6.22 ± 0.04	6.20 ± 0.01	72	$\mathbf{H}\mathbf{f}$	0.84 ± 0.04	0.71 ± 0.02
29	Cu	4.19 ± 0.05	4.25 ± 0.04	73	Ta		-0.12 ± 0.04
30	Zn	4.56 ± 0.04	4.63 ± 0.04	74	W	0.87 ± 0.11	0.65 ± 0.04
31	Ga	3.04 ± 0.10	3.08 ± 0.02	75	Re		0.26 ± 0.04
32	Ge	3.65 ± 0.09	3.58 ± 0.04	76	Os	1.29 ± 0.06	1.35 ± 0.03
33	As		2.30 ± 0.04	77	Ir	1.35 ± 0.10	1.32 ± 0.02
34	Se		3.34 ± 0.03	78	Pt		1.62 ± 0.03
35	\mathbf{Br}		2.54 ± 0.06	79	Au	0.93 ± 0.11	0.80 ± 0.04
36	Kr	$[3.25 \pm 0.06]$	-2.23	80	Hg		1.17 ± 0.08
37	Rb	2.52 ± 0.08	2.36 ± 0.03	81	Tl	0.90 ± 0.20	0.77 ± 0.03
38	Sr	2.87 ± 0.07	2.88 ± 0.03	82	Pb	1.76 ± 0.08	2.04 ± 0.03
39	Y	2.21 ± 0.05	2.17 ± 0.04	83	Bi		0.65 ± 0.04
40	Zr	2.58 ± 0.05	2.53 ± 0.04	90	$^{\mathrm{Th}}$	0.02 ± 0.09	0.06 ± 0.03
41	Nb	1.46 ± 0.04	1.41 ± 0.04	92	U		-0.50 ± 0.03
42	Mo	1.88 ± 0.08	1.94 ± 0.04				

3D models of metal-poor dwarfs

Hydrogen

Hydrogen lines and T_{eff}

H lines as thermometer

- + precise
- + pressure broadening
- non-LTE
- convection

Barklem et al. 2000: Importance of self-broadening

Hydrogen non-LTE

LTE normally assumed valid but is it true?

Barklem 2007: Departures from LTE in 1D makes H line wings weaker \Rightarrow Lower T_{eff} by ~100K?

Unclear whether LTE or non-LTE due to uncertain inelastic H+H collisions

Convection sensitivity

Ludwig et al. 2009: "3D correction" of T_{eff} depends on MLT flavour of 1D model Δ Teff as large as ±300K!

3D non-LTE for solar H lines

Pereira et al. 2009: Full 3D non-LTE line formation of H lines ⇒ Good agreement with observed profiles

Caution: collisional data uncertain

3D non-LTE for solar H lines

Helium

Lithium

1D non-LTE line formation

Lind et al. 2009:

Non-LTE abundance corrections for wide range of stellar parameters with collisional data from Barklem et al. (2003)

3D non-LTE line formation

Asplund et al. (1999): Low atmospheric T(τ) at low [Fe/H] makes Li line very strong in LTE

Asplund et al. (2003): 3D non-LTE for Li reveals over-ionization

Li line much weaker in 3D non-LTE than 3D LTE

Li abundances

Asplund et al. (2003), Barklem et al (2003): Li abundance in 3D non-LTE the same as 1D non-LTE to within ±0.1 dex Sbordone et al. (2009, submitted + poster): 3D non-LTE calculations for grid of metal-poor dwarfs

Li isotopes

Isotopic shift in Li I 670.8nm resonance line

Exceptionally high-quality spectra needed

⁶Li detections

⁶Li detections spurious?

Cayrel et al. (2007), see also Steffen's talk! Convective line asymmetries can mimic ⁶Li

Steffen et al. (2009)

Similarities and differences

Asplund et al.

- 3D non-LTE for Li
- Broadening from Fe, Ca etc
- Free: ⁷Li, ⁶Li, λ

Steffen, Cayrel et al.

- 3D non-LTE for Li
- Only use Li I 670.8nm
- Free: ⁷Li, ⁶Li, λ , FWHM

Similar ⁶Li/⁷Li results in 1D, 3D LTE and 3D non-LTE for Li

⇒ 3D non-LTE also for Na, Ca, Fe etc lines!

Similarities and differences

Beryllium

Be non-LTE line formation

Be II 313nm lines relatively insensitive to non-LTE and 3D effects

Garcia Perez et al. 2009: 1D non-LTE calculations for Be II for wide range of stellar parameters

∆logBe ≤ ±0.2 dex (over-ionization and over-excitation)

Boron

B non-LTE line formation

Kiselman & Carlsson 1996: Very large 1D non-LTE effects on B I 209+250nm lines

∆log>0.5 dex for metal-poor turn-off stars!

Over-ionization + photon pumping feeding on *J*v/*B*v>1 radiation in UV

B non-LTE revisited

Tan et al. 2009:

New 1D non-LTE calculations with more complete UV line-blocking and H collisions

Be and B vs metallicity

Tan et al. 2009

Summary

3D and non-LTE are nothing magical or "horrendously complicated" [Lambert]

- Non-LTE and 3D effects more important for T_{eff} \uparrow , log $g \downarrow$ and [Fe/H] \downarrow
- T_{eff} from H lines sensitive to 3D and non-LTE(?)
- Li abundance: 1D non-LTE ≈ 3D non-LTE
- ⁶Li/⁷Li difficult! Use information from other lines
- Non-LTE effects for B smaller than thought